

 raywenderlich.com

iOS 101
Hands-On Challenges

Copyright © 2014 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

 raywenderlich.com

Challenge #5: A Podcast App

A few months ago we started an official raywenderlich.com podcast, where several
members of the team chat about iOS development news and tech talk.

Wouldn’t it be great if there was an app that let you easily browse through the
episodes available so far? In this challenge, you will build exactly that – and you’ll
get hands-on experience with Navigation Controllers, Tab Bar Controllers, and
Container View Controllers in the process.

Basic Level Walkthrough
In the resources for this challenge, you will find a starter project called MyPodcast.
Open it in Xcode and open Main.storyboard to see what you have so far:

As you can see, there are three view controllers:

• MyPodcastViewController: Displays some metadata about a podcast, such as
its title and description. Also has a button to display the show notes.

• MyShowNotesViewController: Contains a web view that loads the show notes
for the podcast.

• MyAudioViewController: A reusable view controller that has controls to play an
audio file. Pretend this came from another project, and you’d like to re-use this
view controller in this app.

 raywenderlich.com

You will also see that there is a model class called Podcast that contains the
metadata for each podcast. It also contains a static method to create three
instances of the class for our first three episodes.

Your job in this challenge is to put these view controllers into the following
configuration:

Here you have:

• A tab bar controller, with one tab for each episode

• Each episode will be contained in a navigation controller, so you can navigate
between the container controller view and the detail view controller

• The container view controller will consist of two parts: the podcast view controller
and the audio view controller, contained within container views

Let’s build this from the inside out, starting with the container view controller. To
do this, drag a new view controller into your canvas to the left of the podcast view
controller. Drag two container views into the new view controller, and delete the
new view controllers that it embeds by default. At this point you should have
something that looks like this:

 raywenderlich.com

Now, set up Auto Layout for this view controller by doing the following:

• Select both view controllers and pin them to all edges:

• Select the bottom view controller and constrain its height to 60:

• Select the vertical space constraint between the two container views, and set it to
0:

 raywenderlich.com

• Finally, click Resolve Auto Layout Issues\Update All Frames in View
Controller to make the frames match your new constraints. At this point, you
should see the following:

Next, control-drag from the top container view to the podcast view controller, and
select embed from the popup. Similarly, control-drag from the bottom container
view to the audio view controller, and select embed from the popup.

Finally, drag the “initial view controller” arrow from the podcast view controller to
your new container view controller so it shows up when you run the app. Your
storyboard should now look like this:

 raywenderlich.com

Build and run, and you should see both view controllers contained within your
single new view controller:

Nice! Next, you should create a view controller for this new view controller that
takes a Podcast object as a parameter, and passes the appropriate data to each
contained view controller.

Create a new file with the iOS\Cocoa Touch\Objective-C class template, name
it MyContainerViewController, and make it a subclass of UIViewController.
Then open MyContainerViewController.h and replace it with the following:

@class Podcast;

@interface MyContainerViewController : UIViewController

@property (strong, nonatomic) Podcast *podcast;

@end

This simply adds a property for the podcast to display inside this view controller.
Next switch to MyContainerViewController.m and import each of the contained
view controllers and the model:

#import "MyPodcastViewController.h"
#import "MyAudioViewController.h"
#import "Podcast.h"

Also add this new method:

- (void)prepareForSegue:(UIStoryboardSegue *)segue

 raywenderlich.com

 sender:(id)sender {
 if ([segue.identifier isEqualToString:@"EmbedPodcast"]) {
 MyPodcastViewController *vc = (MyPodcastViewController *)
 segue.destinationViewController;
 vc.podcast = self.podcast;
 }
 if ([segue.identifier isEqualToString:@"EmbedAudio"]) {
 MyAudioViewController *vc = (MyAudioViewController *)
 segue.destinationViewController;
 vc.audioFile = self.podcast.audioFile;
 }
}

The way you set up view controllers inside container views is to override
prepareForSegue:sender: like you see here, and simply set up any properties
when the embed segue is about to occur. Here you simply set the appropriate
property for each view controller.

Note that it distinguishes between the segues by identifier – so for this to work, you
have to set the identifier for each segue. So open Main.storyboard and set the
Identifier of the top segue to EmbedPodcast, and the identifier of the bottom
segue to EmbedAudio.

While you are still in Main.storyboard, you need to associate your new view
controller to your new class. So select your new view controller, and in the identity
inspector set the class to MyContainerViewController.

One last thing. To test that this all works, open MyContainerViewController.m
and add this to the top of prepareForSegue:sender::

self.podcast = [Podcast podcasts][1];

This is a temporary line that sets the podcast property to the second podcast –
you’ll remove this in a moment.

Build and run, and now you should be able to see the info about the second podcast
– and play the episode using the controls at the bottom:

 raywenderlich.com

Once you’ve verified it’s working so far, delete that test line that sets self.podcast.

Next, you will put this view controller inside a navigation controller. This will allow
you to have a navigation stack, and when the user taps the Show Notes button it
will push the show notes view controller on to the navigation stack, giving the user
an easy way to go back to where they started.

To do this, open Main.storyboard, select the container view controller and select
Editor\Embed In\Navigation Controller. This will embed the container view
controller into the navigation controller, and you will see a navigation bar appear on
the top of the container view controller.

Next, control-drag from the Show Notes button to the Show Notes View
Controller, and select push from the popup that appears. At this point, your
storyboard should look like this:

 raywenderlich.com

Next, you need to create a view controller to back this navigation controller so you
can pass the podcast model object through, just like last time.

To do this, create a new file with the iOS\Cocoa Touch\Objective-C class
template, name it MyNavigationController, and make it a subclass of
UIViewController. Then open MyNavigationController.h and replace it with the
following:

@class Podcast;

@interface MyNavigationController : UINavigationController

@property (strong, nonatomic) Podcast *podcast;

@end

Just as before, this simply has a property for the podcast to display.

Switch to MyNavigationController.m and add these imports to the top of the file:

#import "Podcast.h"
#import "MyContainerViewController.h"

Unlike the container view controller, in navigation controllers you don’t put the
initial setup code in prepareForSegue:sender:; instead, you put it in
viewDidLoad. So replace viewDidLoad with the following:

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Testing only, you'll delete this line in a moment
 self.podcast = [Podcast podcasts][2];

 // Pass podcast to container view controller
 MyContainerViewController *vc =
 [self.viewControllers objectAtIndex:0];
 vc.podcast = self.podcast;
}

The first line is a testing line – it sets the podcast to display to the third podcast, to
check that everything is working OK. You will delete this in a moment.

Next, a navigation controller contains a property called viewControllers that lists
all of the view controllers currently on the stack. Here you pick out the first item
(the root view controller), which you know is a container view controller, and pass
the podcast model object through.

 raywenderlich.com

Next, open Main.storyboard, select the navigation view controller, and in the
Identity Inspector set the class to your new MyNavigationController to link the
two.

The final step is to set up the podcast view controller to pass the podcast info to the
show notes view controller. Still in Main.storyboard, select the push segue
between the podcast and show notes view controllers and set the Identifier to
Show Notes. Then open MyPodcastViewController.m and add this to the
bottom of the file:

- (void)prepareForSegue:(UIStoryboardSegue *)segue
sender:(id)sender {
 if ([segue.identifier isEqualToString:@"ShowNotes"]) {
 MyShowNotesViewController *vc = (MyShowNotesViewController *)
 segue.destinationViewController;
 vc.podcast = self.podcast;
 }
}

As usual, before this segue occurs you have an opportunity to pass data to the new
view controller, so you pass the podcast through here.

Build and run, and the info for the third podcast will appear (Cocoa Design
Patterns). Even better, if you tap the Show Notes you should see the show notes
page appear:

You may have noticed, however, that the container view controller appears behind
the navigation bar, which probably isn’t what you want:

 raywenderlich.com

Here’s how you can fix this:

• Open Main.storyboard and resize the top container view controller so the top is
below the navigation bar

• Delete the constraint between the top of the top container and the superview

• Control-drag between the top of the top container and the white space right
above, choose Top Layout Guide

• Select that new constraint and set the constant to 0

Basically what that did was switch the constraint between the top of the top
container view from the Superview to the Top Layout Guide. The top layout
guide is a special value that means “the topmost area, below any other views that
might be up there like toolbars, navigation bars, etc.”

Build and run, and it should look much better:

 raywenderlich.com

Also delete that test line in MyNavigationController.m’s viewDidLoad.

OK you’re on to the final step – making a tab for each episode. To do this, open
Main.storyboard, select your navigation controller, and select Editor\Embed
In\Tab Bar Controller. It will create one tab item by default, but to create two
more control-drag from the tab bar controller to the navigation controller and
select Relationship Segue\view controllers two times. At this point your
storyboard should look like this:

As usual, you need to create a class for the tab bar controller to pass the model
data through. Create a new file with the iOS\Cocoa Touch\Objective-C class
template, name it MyTabBarController, and make it a subclass of
UITabBarController.

Back in Main.storyboard, select your tab bar controller and set its class to
UITabBarController in the Identity Inspector.

Then open MyTabBarController.m and add these lines to the top of the file:

#import "Podcast.h"
#import "MyNavigationController.h"

Also add this new method:

- (void)setupViewController:(int)index
 withPodcast:(Podcast *)podcast {
 MyNavigationController *vc = self.viewControllers[index];
 vc.podcast = podcast;
 vc.tabBarItem.title = [NSString stringWithFormat:@"Episode %d",
 podcast.episodeNumber];
 vc.tabBarItem.image = [UIImage imageNamed:[NSString
 stringWithFormat:@"%d.png", podcast.episodeNumber]];
}

 raywenderlich.com

Usually you can set the tab bar item title and image inside the Storyboard editor,
but in this case you can’t because you’re using the same view controller multiple
times (so it needs a different tab bar item for each case). So here you’ll set the tab
bar item for each view controller programmatically before you display it.

This is a helper method that looks in the tab bar controller’s viewControllers array
(one for each tab) and sets the podcast to the appropriate value. It also sets up the
tab bar item with an image and title based on the episode.

Finally, replace viewDidLoad with the following:

- (void)viewDidLoad
{
 [super viewDidLoad];
 NSArray *podcasts = [Podcast podcasts];
 for (int i = 0; i < 3; i++) {
 [self setupViewController:i withPodcast:podcasts[i]];
 }
}

This calls the helper method with the appropriate podcast from the podcasts array.

Build and run, and enjoy some podcasts! :]

 raywenderlich.com

Uber Haxx0r Challenge
Your uber haxx0r challenge is to instrument this app using Reveal
(http://www.revealapp.com) and take a look at the views to get a good idea of the
view hierarchy.

Next, draw two diagrams:

• A simplified version of the view hierarchy when you’re viewing and listening a
podcast episode

• For the same screen, a diagram of the view controller hierarchy

If you have a good understanding of the difference here, congratulations – you
have reached the uber haxx0r level!

