OpenGL ES
& GLKit

-
Q
-
-
00
)

!



Beginner OpenGL ES & GLKit
Hands-On Challenges

Copyright © 2014 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

u raywenderlich.com



Challenge #1: Flash Start

Let’s get started with a flash - quite literally!

In this short challenge, you will make a new project that uses OpenGL to make the
screen flash in an animated manner.

Part 1: Red Alert

Create a new project with the iOS\Application\Single View Application
template. Name it RedAlert, set the class prefix to RWT, and save the project.

Open Main.storyboard and delete the view controller inside. Drag a new GLKit
View Controller from the object library in its place.

Next you need to subclass GLkviewController and set this new view controller to
use your subclass. To do this, open RWTViewController.h (the template made
this for you) and modify the file to look like the following:

#import <UIKit/UIKit.h>
@import GLKit;
@interface RWTViewController : GLKViewController

@end

Next open Main.storyboard, select the view controller, and in the Identity
Inspector (3™ tab) set the Class to RWTViewController.

Now your project is set up to use RwTviewController to use OpenGL to render its
view. You just need to do three things:

1. Create and set the OpenGL context
2. Override glkView:drawInRect: to render
3. (Optionally) override update to update the view

Let’s start with the first step. Open RWTViewController.m and replace
viewDidLoad with the following:

— (void)viewDidLoad {
[super viewDidLoad];
GLKView *xview = (GLKView x)self.view;
view.context = [[EAGLContext alloc]

u raywenderlich.com



initWithAPI:kEAGLRenderingAPIOpenGLES2];
[EAGLContext setCurrentContext:view.context];

}

This creates and sets an OpenGL context.

Next, you're going to make your screen flash between red and black. To do this,
add the following private instance variable to the top of the file:

@implementation RWTViewController {
float _curRed;
b

This will keep track of the current “red” value (between 0 and 1); you will update
this each frame.

Add this new method to render the scene:

- (void)glkView: (GLKView x)view drawInRect: (CGRect)rect {
glClearColor(_curRed, @0, 0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);

b

This clears the screen to be the color according to _curred.

Finally, add this new method to update the _curRed value each frame:

- (void)update {
float secsPerFlash = 2;
_curRed = (sinf(self.timeSinceFirstResume * 2%M_PI / secsPerFlash) x
0.5) + 0.5;
}

This makes curred alternate between 0 and 1 over a period of 2 seconds.

Note: Not sure how this works? Well, sinf() is the sin function, which by
default alternates betweeny = -1 and 1 for x = 0 -> M_PI. Here you are
substituting time for x, so by default it will go between -1 and 1 every ~3.14
seconds.

You want it to flash more frequently than this. To do this, you want to modify
the period of the sin function. You can do this by multiplying your x value by
2*M_PI/[desired period].

Similarly, you don’t want the values to go from -1 to 1, since negative colors
don’'t make any sense. You want it to go from 0 to 1 instead. To fix this, you

u raywenderlich.com



multiply the result by 0.5 (so the range is now -0.5 to 0.5) and then add 0.5
(for a final O to 1).

As you can see, sin functions are very handy for periodic value changes like
this. To learn more, check out this video:

* https://www.khanacademy.org/math/trigonometry/basic-
trigonometry/trig_graphs_tutorial/v/amplitude-and-period-cosine-
transformations

Build and run, and watch out - your screen is flashing, alerting you that your first
uber haxx0r challenge is on the way! :]

Uber HaxxOr Challenge: Flashing Flag

As you can see a GLKViewController iS @ view controller, just like any other view
controller. This means two things:

1. You can embed multiple GLKViewControllers inside a single view controller, if you
have different things you want to render.

2. You can mix GLKViewControllers with other kinds of UIKit controls and view
controllers, such as sliders.

To experiment with this, you should modify your RwTviewController SO it contains
the following properties:

@property (assign) float rMult;
@property (assign) float gMult;
@property (assign) float bMult;
@property (assign) float secsPerFlash;

And modify your draw and update methods as follows:

(void)glkView: (GLKView *)view drawInRect: (CGRect)rect {

glClearColor(_curVal *x self.rMult, _curVal x self.gMult, _curVal x
self.bMult, 1.0);

glClear(GL_COLOR_BUFFER_BIT);

(void)update {
_curVal = (sinf(self.timeSinceFirstResume * 2%M_PI / _secsPerFlash) x
0.5) + 0.5;

u raywenderlich.com



Now, open your storyboard and use container view controllers to create a layout
that looks something like this:

GLKit View Controller

Container View Controller

You should create a class for this container view controller, and configure it so that
the top-most view controller flashes red, the middle green, and the bottom blue.
The slider (range 0.25-10) should allow you to configure the secsPerFlash for each
child view controller (so the user can toggle how quickly/slowly each view controller
flashes).

If you get it working, you should see something like this (except it flashes):

As you can see, you can render to just one portion of the screen, or even multiple
places, and use all the UIKit controls you know and love with OpenGL!

u raywenderlich.com



