

 raywenderlich.com

Beginner OpenGL ES & GLKit
Hands-On Challenges

Copyright © 2014 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

 raywenderlich.com

Challenge #2: Star White, Star
Bright
In this short challenge, you will get practice working with OpenGL vertices by
creating a star with triangles.

Part 1: Half Star
In the resources for this challenge, you will find a starter project. This is a project
that is equivalent to where things left off in the lecture, with a triangle drawn to the
screen. Look through the project and make sure you have a good understanding of
how it works.

Your goal is to create the following star outline:

You need to create five different triangles, with the vertices shown above (A-J). To
do this, open RWTViewController.m and inside setupVertexBuffer, replace the
declaration of vertices with the following:

const static RWTVertex vertices[] = {
 {{+0.37, -0.12, 0}}, // A
 {{+0.95, +0.30, 0}}, // B
 {{+0.23, +0.30, 0}}, // C

 raywenderlich.com

 {{+0.23, +0.30, 0}}, // C
 {{+0.00, +0.90, 0}}, // D
 {{-0.23, +0.30, 0}}, // E

 {{-0.23, +0.30, 0}}, // E
 {{-0.95, +0.30, 0}}, // F
 {{-0.37, -0.12, 0}}, // G

 {{-0.37, -0.12, 0}}, // G
 {{-0.57, -0.81, 0}}, // H
 {{+0.00, -0.40, 0}}, // I

 {{+0.00, -0.40, 0}}, // I
 {{+0.57, -0.81, 0}}, // J
 {{+0.37, -0.12, 0}}, // A
};

Try to match up each of the vertices with the diagram above to make sure you
understand how each triangle works.

Finally, scroll down to glkView:drawInRect: and replace the glDrawArrays line with
the following:

glDrawArrays(GL_TRIANGLES, 0, 15);

This tells OpenGL that there are 15 vertices in your array (5 triangles x 3 vertices
each).

Build and run, and you now have the outline of a star!

Part 2: Full Star
In the next part of the challenge, your goal is to fill in the “hole” in the middle of
the star:

 raywenderlich.com

To do this, you will need to create 5 triangles that each have the center (0, 0) as
one of the coordinates. See if you can figure this out on your own!

Uber Haxx0r Challenge: Uber Star
If you’re feeling particularly awesome today, why not see if you can make a
dynamic star generator?

 raywenderlich.com

Your app should have three sliders that let you tweak the number of “arms” of the
star, the outer star radius, and the inner star radius.

Here are a few tips on how to accomplish this:

• Start by figuring out how you could get X points along a circle. Hint: you’ll need
cos and sin.

• It may be helpful to make a loop that alternates through the circles by a delta
angle, alternating between the inner and outer circles to get the points in the
sequence. Once you have three vertices, that’s a triangle, but you’ll need to
repeat the final vertex to begin the next triangle.

• Like you did in the earlier examples, it’s easiest to get the “outer” part working
first, then do the inner part.

• The easiest way to update the vertex data is just to re-send the data with
glBufferData when it needs to be refreshed.

