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Challenge #2: Star White, Star 
Bright 
In this short challenge, you will get practice working with OpenGL vertices by 
creating a star with triangles. 

Part 1: Half Star 
In the resources for this challenge, you will find a starter project. This is a project 
that is equivalent to where things left off in the lecture, with a triangle drawn to the 
screen. Look through the project and make sure you have a good understanding of 
how it works. 

Your goal is to create the following star outline: 

 

You need to create five different triangles, with the vertices shown above (A-J). To 
do this, open RWTViewController.m and inside setupVertexBuffer, replace the 
declaration of vertices with the following: 

const static RWTVertex vertices[] = { 
  {{+0.37, -0.12, 0}}, // A 
  {{+0.95, +0.30, 0}}, // B 
  {{+0.23, +0.30, 0}}, // C 
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  {{+0.23, +0.30, 0}}, // C 
  {{+0.00, +0.90, 0}}, // D 
  {{-0.23, +0.30, 0}}, // E 
   
  {{-0.23, +0.30, 0}}, // E 
  {{-0.95, +0.30, 0}}, // F 
  {{-0.37, -0.12, 0}}, // G 
   
  {{-0.37, -0.12, 0}}, // G 
  {{-0.57, -0.81, 0}}, // H 
  {{+0.00, -0.40, 0}}, // I 
   
  {{+0.00, -0.40, 0}}, // I 
  {{+0.57, -0.81, 0}}, // J 
  {{+0.37, -0.12, 0}}, // A 
}; 

Try to match up each of the vertices with the diagram above to make sure you 
understand how each triangle works. 

Finally, scroll down to glkView:drawInRect: and replace the glDrawArrays line with 
the following: 

glDrawArrays(GL_TRIANGLES, 0, 15); 

This tells OpenGL that there are 15 vertices in your array (5 triangles x 3 vertices 
each). 

Build and run, and you now have the outline of a star! 

Part 2: Full Star 
In the next part of the challenge, your goal is to fill in the “hole” in the middle of 
the star: 
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To do this, you will need to create 5 triangles that each have the center (0, 0) as 
one of the coordinates. See if you can figure this out on your own! 

Uber Haxx0r Challenge: Uber Star 
If you’re feeling particularly awesome today, why not see if you can make a 
dynamic star generator? 
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Your app should have three sliders that let you tweak the number of “arms” of the 
star, the outer star radius, and the inner star radius. 

Here are a few tips on how to accomplish this: 

• Start by figuring out how you could get X points along a circle. Hint: you’ll need 
cos and sin. 

• It may be helpful to make a loop that alternates through the circles by a delta 
angle, alternating between the inner and outer circles to get the points in the 
sequence. Once you have three vertices, that’s a triangle, but you’ll need to 
repeat the final vertex to begin the next triangle. 

• Like you did in the earlier examples, it’s easiest to get the “outer” part working 
first, then do the inner part. 

• The easiest way to update the vertex data is just to re-send the data with 
glBufferData when it needs to be refreshed. 


