

 raywenderlich.com

Scroll View School
Hands-On Challenges

Copyright © 2014 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

 raywenderlich.com

Challenge B: Frame It!
So far, you have only added one subview to your scroll view, but you can add more
than one subview if you’d like. The scroll view will display all of its subviews,
scrolling accoridng to how you set its content size (either directly or via
constraints).

However, when you implement viewForZoomingInScrollView:, you can only return
one subview for zooming. So the workaround is to make a new “content view” that
contains all the subviews that you want to zoom, like this:

Scroll View

|--Content View

 |--Subview 1

 |--Subview 2

In this tutorial, you will get practice with this concept by framing the zombie image:
first with a plain gray frame, and then with a resizable frame image.

Part 1: Gray Frame
Open the starter project for this challenge (which is the same spot where the demo
from the lecture left off).

Open RWTCenteredImageScrollView.m, and add a new property for the content
view:

@property (nonatomic, strong) UIView *contentView;

At the beginning of initWithFrame:, add these lines to initialize the view:

self.contentView = [[UIView alloc] initWithFrame:CGRectZero];
self.contentView.translatesAutoresizingMaskIntoConstraints = NO;
self.contentView.backgroundColor = [UIColor grayColor];
[self addSubview:self.contentView];

You want to make the image view a subview of the content view now, rather than a
subview of the scroll view. So modify the line that adds the image view as a
subview to the following:

[self.contentView addSubview:self.imageView];

 raywenderlich.com

Next, you need to update the constraints to pin the content view to the edges of
the scroll view (rather than the image view), since the content view is now the
subiew of the scroll view. To do this, replace self.imageView with self.contentView
in for constraintRight:

self.constraintRight = [NSLayoutConstraint

 constraintWithItem:self.contentView
 attribute:NSLayoutAttributeRight relatedBy:NSLayoutRelationEqual
 toItem:self attribute:NSLayoutAttributeRight multiplier:1
 constant:0];
[self addConstraint:self.constraintRight];

Then repeat this for constraintTop, constraintBottom, and constraintLeft.

Next, you need to add the constraints to pin the image view inside the content
view. To do this, add these lines right before the part that adds the notification
observer:

NSDictionary *viewsDictionary = @{@"imageView": self.imageView};

NSArray *horzConstraints = [NSLayoutConstraint
 constraintsWithVisualFormat:@"|-(75)-[imageView]-(75)-|"
 options:0 metrics:nil views:viewsDictionary];
[self.contentView addConstraints:horzConstraints];

NSArray *vertConstraints = [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|-(75)-[imageView]-(75)-|"
 options:0 metrics:nil views:viewsDictionary];
[self.contentView addConstraints:vertConstraints];

These pin the image view to the edges of the content view, but leaves a margin so
the background color of the border can show through, effectively making a border.

Finally, replace viewForZoomingInScrollView: with the following:

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView
{
 return self.contentView;
}

And that’s it! Build and run, and your scroll view now has a nice border:

 raywenderlich.com

Uber Haxx0r Challenge: Wood Frame
In the resources for this challenge, you will find an image asset for a picture frame.
Your challenge is to add the picture frame to the content view, so that the picture
now looks like this:

