

 raywenderlich.com

Scroll View School
Hands-On Challenges

Copyright © 2014 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

 raywenderlich.com

Challenge G: Gesture
Recognizers
So far, you can pan and zoom around your map, but what if you wanted to actually
make something happen in your game in response to touches?

In this challenge, you’ll get some practice with this by adding two types of gesture
recognizers: a tap gesture recognizer, and a pan gesture recognizer.

Part 1: Tap Gesture Recognizer
In this part of the challenge, let’s make it so that if you tap a treasure chest, a
sound effect plays and the treasure chest disappears.

To do this, you’ll need to add a tap gesture recognizer to the view controller. Add
these lines to viewWillLayoutSubviews, right after setting the scene’s vc property:

UITapGestureRecognizer *tapRecognizer =
 [[UITapGestureRecognizer alloc] initWithTarget:self.scene
 action:@selector(viewTapped:)];
[self.scrollView addGestureRecognizer:tapRecognizer];

Here you’re passing the gesture recognizer callback straight to the scene for
simplicity. So declare the method in MyScene.h:

- (void)viewTapped:(UITapGestureRecognizer *)recognizer;

Switch to MyScene.m and implement it as follows:

- (void)viewTapped:(UITapGestureRecognizer *)recognizer {
 // 1
 CGPoint tapLocation = [recognizer locationInView:self.view];
 tapLocation = [self convertPointFromView:tapLocation];
 // 2
 CGPoint mapLocation = [self.cave convertPoint:tapLocation

 fromNode:self];
 // 3
 SKNode *node = [self.cave nodeAtPoint:mapLocation];
 // 4
 if (node) {

 raywenderlich.com

 // 5
 if ([node.name isEqualToString:@"TREASURE"]) {
 // 6
 [node removeFromParent];
 [self runAction:[SKAction playSoundFileNamed:@"treasure.wav"

 waitForCompletion:NO]];
 }
 }
}

Let’s review this section by section:

1. Get the location inside the view for the tap. These are in UIKit coordinates, so
you have to convert them to Sprite Kit coordinates with the
convertPointFromView: method built-in to SKScene.

2. Next convert the point from scene to map coordinates with
convertPoint:fromNode:.

3. The Cave class has a method that returns you the node at a certain point.

4. Make sure a node is returned.

5. Check to see if it’s a treasure.

6. If it’s a treasure, remove it from the scene, and play a sound effect.

And that’s it! Build and run, and now you should be able to scroll around the map
and tap treasure chests to remove them.

Uber Haxx0r Challenge: Pan Gesture
Recognizer
Your next challenge is to modify the game so that panning works as usual, except
when you pan starting on a treasure chest. In that case, you should be able to drag
the treasure chest to a new position.

Here are a few hints for how to accomplish this:

• Add a pan gesture recognizer to the scroll view, just like you did for the tap
gesture recognizer. Send the callback to the scene.

• This time, set the delegate of the pan gesture recognizer to the scene.

• Inside the scene, implement gestureRecognizer:shouldReceiveTouch:. It should
return NO unless the user is dragging on top of a treasure node. In this case, you

 raywenderlich.com

should remove it from its parent node, and add it as a direct node of the cave
instead. Also save a copy of this node for future reference.

• In your callback for the pan geseture recognizer, check the state of the gesture
recognizer. On begin, zoom up the treasure. On changed, move the treasure to
the new position. One end, zoom back the treasure. Also remove it from its
parent, and add it as a child of whatever node is at the current point.

If you get this working, congratulations – you now have the full power of scroll
views, gesture recognizers, and Sprite Kit at your disposal! :]

