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Challenge G: Gesture 
Recognizers 
So far, you can pan and zoom around your map, but what if you wanted to actually 
make something happen in your game in response to touches? 

In this challenge, you’ll get some practice with this by adding two types of gesture 
recognizers: a tap gesture recognizer, and a pan gesture recognizer. 

Part 1: Tap Gesture Recognizer 
In this part of the challenge, let’s make it so that if you tap a treasure chest, a 
sound effect plays and the treasure chest disappears. 

To do this, you’ll need to add a tap gesture recognizer to the view controller. Add 
these lines to viewWillLayoutSubviews, right after setting the scene’s vc property: 

UITapGestureRecognizer *tapRecognizer =  
  [[UITapGestureRecognizer alloc] initWithTarget:self.scene  
    action:@selector(viewTapped:)]; 
[self.scrollView addGestureRecognizer:tapRecognizer]; 

Here you’re passing the gesture recognizer callback straight to the scene for 
simplicity. So declare the method in MyScene.h: 

- (void)viewTapped:(UITapGestureRecognizer *)recognizer; 

Switch to MyScene.m and implement it as follows: 

- (void)viewTapped:(UITapGestureRecognizer *)recognizer { 
  // 1 
  CGPoint tapLocation = [recognizer locationInView:self.view]; 
  tapLocation = [self convertPointFromView:tapLocation]; 
  // 2 
  CGPoint mapLocation = [self.cave convertPoint:tapLocation  

    fromNode:self]; 
  // 3 
  SKNode *node = [self.cave nodeAtPoint:mapLocation]; 
  // 4 
  if (node) { 
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    // 5 
    if ([node.name isEqualToString:@"TREASURE"]) { 
      // 6 
      [node removeFromParent]; 
      [self runAction:[SKAction playSoundFileNamed:@"treasure.wav"  

        waitForCompletion:NO]]; 
    } 
  } 
} 

Let’s review this section by section: 

1. Get the location inside the view for the tap. These are in UIKit coordinates, so 
you have to convert them to Sprite Kit coordinates with the 
convertPointFromView: method built-in to SKScene. 

2. Next convert the point from scene to map coordinates with 
convertPoint:fromNode:. 

3. The Cave class has a method that returns you the node at a certain point.  

4. Make sure a node is returned. 

5. Check to see if it’s a treasure. 

6. If it’s a treasure, remove it from the scene, and play a sound effect. 

And that’s it! Build and run, and now you should be able to scroll around the map 
and tap treasure chests to remove them. 

Uber Haxx0r Challenge: Pan Gesture 
Recognizer 
Your next challenge is to modify the game so that panning works as usual, except 
when you pan starting on a treasure chest. In that case, you should be able to drag 
the treasure chest to a new position. 

Here are a few hints for how to accomplish this: 

• Add a pan gesture recognizer to the scroll view, just like you did for the tap 
gesture recognizer. Send the callback to the scene. 

• This time, set the delegate of the pan gesture recognizer to the scene. 

• Inside the scene, implement gestureRecognizer:shouldReceiveTouch:. It should 
return NO unless the user is dragging on top of a treasure node. In this case, you 
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should remove it from its parent node, and add it as a direct node of the cave 
instead. Also save a copy of this node for future reference. 

• In your callback for the pan geseture recognizer, check the state of the gesture 
recognizer. On begin, zoom up the treasure. On changed, move the treasure to 
the new position. One end, zoom back the treasure. Also remove it from its 
parent, and add it as a child of whatever node is at the current point. 

If you get this working, congratulations – you now have the full power of scroll 
views, gesture recognizers, and Sprite Kit at your disposal! :] 


