
Procedural Level 
Generation in 

Games
Kim Pedersen



Tech talk brought to you by …

Ray Wenderlich

Wes Paugh

Kim Pedersen



Definition

“ Procedural Content Generation (PCG) is the 
programmatic generation of game content using a 
random or pseudo-random process that results in 
an unpredictable range of possible game play 
spaces “

Source: Procedural Content Generation Wiki, http://pcg.wikidot.com

http://pcg.wikidot.com


Examples of procedural content

Textures

Sprites

3D models

Sound

Levels etc…



Why all the fuzz about Procedural Content 
Generation?

Reduce time generating content  

Reduce game footprint  

Greater variety in content. 

Content that would otherwise be impossible/impractical to create by hand  

Enhance replayability 



Examples of games using procedural content

100 RoguesTiny Wings Spelunky

Diablo Minecraft



Rogue

Developed on Unix by Michael Toy and Glenn Wichman around 1980 

One of the first games to use procedural levels 

Has lead to a class of 
games called “roguelikes”  
characterized by procedural level  
generation, tile-based graphics and  
permadeath



Procedural Level Generation

Procedural levels can be generated in 1d, 2d, 3d



Procedural Level Generation

Tiny Wings Spelunky

Cube World

Tiny Wings Spelunky

Cube World



Procedural Level Generation

Procedural levels can be generated in 1d, 2d, 3d  

Generated programmatically using an algorithm and 
pseudo-random parameters



Algorithms in procedural level generation

Several popular algorithms are used in procedural level generation:  

Agent-based dungeon growing (Drunkard Walk) 

Space Partitioning (Binary Space Partitioning (BSP)) 

Cellular automata  

Noise (Perlin noise, Simplex noise)  

.. or roll your own algorithm.

Get more inspiration from RogueBasin: http://pcg.wikidot.com/pcg-algorithm:map-generation 

http://pcg.wikidot.com/pcg-algorithm:map-generation


Algorithms in procedural level generation

Get more inspiration from RogueBasin: http://pcg.wikidot.com/pcg-algorithm:map-generation 

Useful for:

Complexity:

Connected:

Agent based 
dungeon growing

Organic or chaotic dungeons

Simple

Yes

Space 
Partitioning

Neatly laid out dungeons with 
rooms connected by 

corridors

Simple

Yes

Cellular  
Automata

Organic looking caves or 
islands

Medium

No

Noise

Maps and terrain

Hard

No

http://pcg.wikidot.com/pcg-algorithm:map-generation


Agent based dungeon growing

1. Choose a random start position 

2. Pick a random direction to move 

3. Move in that direction and mark the position 
as a floor or room, unless it already is a floor. 

4. Repeat steps 2 and 3

Ray Wenderlich tutorial: http://www.raywenderlich.com/49502/procedural-level-generation-in-games-tutorial-part-1 

http://www.raywenderlich.com/49502/procedural-level-generation-in-games-tutorial-part-1


Space Partitioning - Step 1-4

1. Choose to split horizontally or 
vertically 

2. Choose a random position (x 
for vertical, y for horizontal) 

3. Split the dungeon into two 
sub-dungeons (leafs) 

4. Repeat steps 1 and 3 for each 
leaf

A B

A1

A2

B1 B2
A B

A1 A2 B1 B2

Source: www.roguebasin.com/index.php?title=Basic_BSP_Dungeon_generation

http://www.roguebasin.com/index.php?title=Basic_BSP_Dungeon_generation


Space Partitioning - Step 5-8

5. Create a room with random size in 
each leaf of the tree 

6. Loop through all the leafs of the tree, 
connecting each leaf to its sister  

7. Go up one level in the tree and 
repeat the process for the parent sub-
regions 

8. Repeat the process until the first two 
sub-dungeons A and B are connected

A1

A2

B1 B2
A B

A1 A2 B1 B2

Source: www.roguebasin.com/index.php?title=Basic_BSP_Dungeon_generation

http://www.roguebasin.com/index.php?title=Basic_BSP_Dungeon_generation


Cellular Automata

1. Set the state of the cells in the grid to 
either on or off  

2. Apply transition rules to all grid cells 
simultaneously  

3. Repeat step 2 a desired number of times

Ray Wenderlich tutorial: http://www.raywenderlich.com/66062/procedural-level-generation-games-using-cellular-automaton-part-1 

http://www.raywenderlich.com/66062/procedural-level-generation-games-using-cellular-automaton-part-1


Building a procedural level

This tech talk will examine implementing a cave-like level for a top-down 
2D RPG type game. 
!

Cave should appear to be organic  

All parts of the level should be reachable 
!

The exit must be reachable from the entrance



Steps in Procedural Level Generation

A simple approach to procedural level generation in games:  

Create an abstract level class 
This class will handle generic level rendering, stores level data and has methods to query the level for helpful information. 

Implement procedural algorithm to generate the level  
There are many algorithms with varying difficulty to implement that will give different visual results. Pick your algorithm wisely. 

Place loot, add enemies and generate obstacles/quests etc (not in scope for this tech talk) 
Adding the content to the level is often the most difficult part of generating interesting levels. 

Determine fitness of level 
All levels in a game should be feasible, interesting and target an appropriate skill level. 



Abstract level class



Picking the right algorithm

A cellular automaton would be a good choice for this game as we would like the level 
to look like an organic cave



Implementing the algorithm



Procedural algorithms

A good procedural algorithm needs to nail:  

Feasibility: Can you beat the level? 
. 
Interesting design: Do you want to beat the level? 
. 
Appropriate skill level: Is it a good challenge?

Source: Jordan Fisher, How to make insane, procedural platformer levels, Gamasutra, May 10, 2012



Procedural algorithms - Feasibility

If you want more than a 1-star rating on the AppStore, your levels should be feasible. 
!

Is it possible to reach the exit from the entrance? 
Use A* path-finding to determine if a passage exists 
!

What restrictions will the algorithm have on the feasibility 
of the level? 
For example, a cellular automaton will create disconnected caverns. 
!

Are there any constraints on the game world?  
Consider the constraints on the game world like gravity, collision shapes, doors.



Procedural algorithms - Interesting Design

Entrance
Exit

A not so interesting level

Making the level interesting is one of the most difficult parts of procedural level generation. 
!

Make any parameter that has an impact on the algorithm 
a property to allow more flexibility in generating the level 
Make the level destructible 
Include keys and locks to ensure the player explores the level 
Include special items to make the player want to explore the 
level 
Make some rooms “hand-made” like “temple”, “treasure room” etc 
Ensure variability in room layouts. That makes the levels seem less repetitive.



Procedural algorithms - Appropriate Skill Level

Do not go overboard with complexity - especially for mobile games it is sufficient to control 
difficulty with: 
!

The longer the distance between entrance and exit the harder the level 
More enemies increase difficulty 
More powerful enemies increase difficulty 
Smarter enemies increase difficulty 
A looked door blocking the path to the exit increases difficulty 
Etc. 
!

No need to make it more complex that what is needed (KISS)



Resources

Ray Wenderlich tutorials on procedural level generation: 
http://www.raywenderlich.com/49502/procedural-level-generation-in-games-tutorial-part-1 

http://www.raywenderlich.com/51786/procedural-level-generation-in-games-part-2 

http://www.raywenderlich.com/66062/procedural-level-generation-games-using-cellular-automaton-part-1 

http://www.raywenderlich.com/70610/procedural-level-generation-games-using-cellular-automaton-part-2 

!

RogueBasin 
http://www.roguebasin.com 

!

Procedural Content Generation Wiki 
http://pcg.wikidot.com/ 
!

Roguelike Radio (podcasts about roguelikes) 
http://www.roguelikeradio.com

Source: Jordan Fisher, How to make insane, procedural platformer levels, Gamasutra, May 10, 2012

http://www.raywenderlich.com/49502/procedural-level-generation-in-games-tutorial-part-1
http://www.raywenderlich.com/51786/procedural-level-generation-in-games-part-2
http://www.raywenderlich.com/66062/procedural-level-generation-games-using-cellular-automaton-part-1
http://www.raywenderlich.com/70610/procedural-level-generation-games-using-cellular-automaton-part-2
http://www.roguebasin.com
http://pcg.wikidot.com/
http://www.roguelikeradio.com

