

Introduction to Unity
Hands-On Challenges

Copyright © 2014 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

Challenge F: Adding Physics to
Your Game
Now that you have your game all set up, it’s time to start adding some interaction
to it. You will be doing this through physics. In this challenge, you will add the
physics components, then write your first script to actually set things in motion.

Mind you, you will be learning about scripting in depth in later videos of this series.
For now, just buckle up and hold on. The ride is going to be good! :]

Getting Started
Open the starter challenge project. If you’ve been following this series from the
beginning, open your last saved project.

Note: Unity will open to empty scene. Find the scene that you saved, or if you
are using the Starter Project, open Main.scene.

The first thing you need to do is determine where to place the rigidbodies.
Remember, at least one GameObject needs to be a rigidbody in order to react to
collisions.

Can you guess which GameObjects should have rigidbody components attached to
them? Add them to those GameObjects through the component menu.

Once you add the rigidbodies, uncheck the Use Gravity checkbox since you don’t
want your GameObjects to fall to the ground.

Next, you need to add some contraints to one specific GameObject as you only
want it to move on a 2D plane. Set the rigidbody constraints to look like the
following:

Next, you’ll want to create some Physic Materials. By default, every GameObject
will produce some friction. You want things to be bouncy!

Create a new folder in your Project view, and call it Physics Material. Inside of the
folder, create a new Physics Material and call it Bounce. Set it to have the
following attributes:

Now, add the Bounce Material to any object that you think will interact with the
ball.

Next, update the project settings. To access them, select Edit \ Project Settings
\ Physics and make the dialog look like the following:

Now to see, everything in action, create a new folder in the Project view. Call it
Scripts. In the Scripts folder, create a new C# script and call it, BallScript. Replace
the class code with the following:

public class BallScript : MonoBehaviour {

 public float minimumSpeed = 500; // 1

 public void LaunchBall()
 {
 if (transform.parent) {
 transform.parent = null; // 2
 }
 rigidbody.AddForce(minimumSpeed, minimumSpeed, 0); // 3
 }

 void Update () {
 if (Input.GetKeyDown(KeyCode.Space)) {
 if (transform.parent != null) { // 4
 LaunchBall();
 }
 }
 }
}

Scripting will be covered in depth in later tutorials, but here’s a quick breakdown of
the previous code:

1. A public variable is initialized to hold the minimum speed of the ball. Since this is
a public variable, you can now change the value of it in the inspector. This change
can occur in realtime, as you are testing your game, and once you stop playing
the game, the value will reset itself to its original value.

2. Every GameObject has an associated transform, and you can access the
transform directly in code. The code checks to see if the Ball has a parent
GameObject, and if so, removes it.

3. Every GameObject can also have a rigidbody so you can access the rigidbody in
shorthand. If a rigidbody is not attached to a GameObject, then that property will
be null. The code access the rigidbody, then applies force to it.

4. Update() is a standard API method that occurs once per frame. When the user
presses down on the spacebar, the code checks to see if there is a parent
GameObject. If this is the case, then the ball has not been launched.

Start the game and press the spacebar. You will see the ball bounce around the
game area. If see your ball start to slow down after hitting a brick, rail, or paddle,
check to see if you have attached the bounce Physic Material.

Congrats … your game is starting to take shape.

