

 raywenderlich.com

iOS Animation with Swift
Hands-On Challenges

Copyright © 2014 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

 raywenderlich.com

Challenge H: Layer Keyframe
animations
In this challenge you’ll get to exercise keyframe animations and create one on your
own. The challenge is pretty similar to what you did back in the UIView keyframe
animations tutorial challenge so I expect you to do just fine.

Part 1: Simple keyframe movement
Scroll to viewWillAppear(animated:) and remove the two lines that set the initial
login button position:

loginButton.layer.position.y += 100.0
loginButton.layer.opacity = 0.0

Then move to viewDidAppear(animated:) and remove all the code that created a
group animation on the login button:

let flyUpAndFadeIn = CAAnimationGroup()
flyUpAndFadeIn.beginTime = CACurrentMediaTime() + 0.5
flyUpAndFadeIn.duration = 0.5
flyUpAndFadeIn.delegate = self
flyUpAndFadeIn.setValue("loginButton", forKey: "name")

let flyUp = CABasicAnimation(keyPath: "position.y")
flyUp.toValue = loginButton.layer.position.y - 100

let fadeIn = CABasicAnimation(keyPath: "opacity")
fadeIn.toValue = 1.0

flyUpAndFadeIn.animations = [flyUp, fadeIn]

loginButton.layer.addAnimation(flyUpAndFadeIn, forKey: nil)

Don’t mourn that piece of code though, you are going to create your own and way
more awesome keyframe-animation. On the spot where the group-animation code
used to be place this new one:

let loginButtonAnimation = CAKeyframeAnimation(keyPath:
"position")
loginButtonAnimation.duration = 0.6

 raywenderlich.com

loginButtonAnimation.values = [
 NSValue(CGPoint: CGPoint(x: -view.frame.size.width/2, y:
loginButton.layer.position.y+100)),
 NSValue(CGPoint: CGPoint(x: view.frame.size.width/2, y:
loginButton.layer.position.y+100)),
 NSValue(CGPoint: CGPoint(x: view.frame.size.width/2, y:
loginButton.layer.position.y))
]
loginButtonAnimation.keyTimes = [0.0, 0.5, 1.0]
loginButtonAnimation.additive = false
loginButton.layer.addAnimation(loginButtonAnimation, forKey: nil)

Notice how you didn’t need to set the initial position in viewWillAppear? This is
because you can set the initial position as the value of position at keyTime 0.0.

You specify the 3 absolute positions on screen of the button along the animation
and set additive to false since CoreAnimation is not to add the values, but they are
absolute values you want to have at the given key times.

Part 2: Cloud layer animations
In this challenge you will re-create the cloud movement in the background of the by
using layer animations.

Find animateCloud(cloud:) and delete it from your view controller class. You will
rewrite the whole method with CoreAnimation. First let’s set the animation
constants – add the empty method body:

func animateCloud(cloud: UIImageView) {
 let cloudSpeed = 20.0 / Double(view.layer.frame.size.width)
 let duration: NSTimeInterval =
Double(view.layer.frame.size.width - cloud.layer.frame.origin.x) *
cloudSpeed

}

This is very similar code to what you had before but it uses the layer’s frame to
calculate the cloud speed.

Next – create the position animation to move the clouds sideways across the
screen. Add to animateCloud(cloud:):

let cloudMove = CABasicAnimation(keyPath: "position.x")
cloudMove.duration = duration
cloudMove.toValue = self.view.bounds.size.width
cloudMove.delegate = self

 raywenderlich.com

cloudMove.setValue("cloud", forKey: "name")
cloudMove.setValue(cloud, forKey: "view")

cloud.layer.addAnimation(cloudMove, forKey: nil)

You assign the cloud view to the animation and set a name for the animation object
because you will want to adjust the cloud layer whenever the animation completes
running.

In animationDidStop add a new if to handle the new animation:

if name == "cloud" {
 let cloud: UIImageView = anim.valueForKey("view") as UIImageView
 cloud.frame.origin.x = -self.cloud1.frame.size.width
 delay(seconds: 0.1, {
 self.animateCloud(cloud);
 })
}

This code resets the position of the cloud to outside of the screen bounds and after
a short delay restarts the cloud animation.

If you’d like to experiment further you can try changing the animation speed or
make it use a different timing function.

