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Challenge O: Finish up the pop 
soccer game 
In this final challenge you will get to excercise your new Pop skills. To finish up the 
complete game you will make the ball bounce off the side edges of the screen. 

To get started open ViewController.swift. Scroll to 
pop_animationDidApply(animation:) and at the bottom of the method body fetch 
the minimum and maximum x coordinates you will allow the ball to move to: 

let minX = ball.frame.size.width/2 
let maxX = view.frame.size.width - ball.frame.size.width/2 

Since you are going to restrict the coordinates of the center of the ball view you 
allow for half of the ball width screen margin. 

Now check whether the ball is outside of the bespoken margin and if so you will 
make the ball bounce. Add: 

if ball.center.x < minX || ball.center.x > maxX { 
   
} 

First you will fetch the current velocity of the movement animation - add inside the 
if: 

let velocityValue = animation.velocity as? NSValue 
let velocity = (velocityValue?.CGPointValue())! 

Since you are animating the ball position on screen, which is a CGPoint – its velocity 
is a CGPoint value as well. You get that velocity as a CGPoint by calling 
CGPointValue() on the NSValue object you get from the animation object. 

This is very handy since you get separate values for the velocity along the x axis 
and the velocity on the y axis of the ball movement. To make the ball bounce off 
the left and right edges you will re-create the ball animation in its current state 
whenever it touches a screen edge. You will reverse the velocity on the x axis in the 
new animation and this will make the ball keep its vertical momentum, but bounce 
back horizontally. 

Before you create the new animation remove the existing animations running on 
the ball. Add (still inside the if): 

ball.pop_removeAllAnimations() 
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Next create a velocity equal to the current ball velocity but reversed horizontally: 

let newVelocity = CGPoint(x: -velocity.x, y: velocity.y) 

This will already make the ball reverse direction, but that’s not quite enough – at 
the moment your replace the animation the ball is outside the allowed bounds. Just 
re-position it back inside the bounds – this won’t make the ball jump since the 
change will be just few pixels: 

let newX = min(max(minX, ball.center.x), maxX) 

The combination of calling mix(a:, b:) and min(a:, b:) clamps the ball x 
coordinate between minX and maxX. 

Finally re-create the decay animation but use the new velocity: 

let newAnimation = POPDecayAnimation(propertyNamed: 
kPOPViewCenter) 
newAnimation.fromValue = NSValue(CGPoint: CGPoint(x: newX, y: 
ball.center.y)) 
newAnimation.velocity = NSValue(CGPoint: newVelocity) 
newAnimation.delegate = self 

The new animation is ready to go, add: 

ball.pop_addAnimation(newAnimation, forKey: "shot") 

Believe it or not that’s all you needed to do to create a cool bounce animation off 
the screen edges. If you want to extend the game just a bit more you can make the 
ball bounce off all of the screen edges. 


