

 raywenderlich.com

iOS Animation with Swift
Hands-On Challenges

Copyright © 2014 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

 raywenderlich.com

Challenge O: Finish up the pop
soccer game
In this final challenge you will get to excercise your new Pop skills. To finish up the
complete game you will make the ball bounce off the side edges of the screen.

To get started open ViewController.swift. Scroll to
pop_animationDidApply(animation:) and at the bottom of the method body fetch
the minimum and maximum x coordinates you will allow the ball to move to:

let minX = ball.frame.size.width/2
let maxX = view.frame.size.width - ball.frame.size.width/2

Since you are going to restrict the coordinates of the center of the ball view you
allow for half of the ball width screen margin.

Now check whether the ball is outside of the bespoken margin and if so you will
make the ball bounce. Add:

if ball.center.x < minX || ball.center.x > maxX {

}

First you will fetch the current velocity of the movement animation - add inside the
if:

let velocityValue = animation.velocity as? NSValue
let velocity = (velocityValue?.CGPointValue())!

Since you are animating the ball position on screen, which is a CGPoint – its velocity
is a CGPoint value as well. You get that velocity as a CGPoint by calling
CGPointValue() on the NSValue object you get from the animation object.

This is very handy since you get separate values for the velocity along the x axis
and the velocity on the y axis of the ball movement. To make the ball bounce off
the left and right edges you will re-create the ball animation in its current state
whenever it touches a screen edge. You will reverse the velocity on the x axis in the
new animation and this will make the ball keep its vertical momentum, but bounce
back horizontally.

Before you create the new animation remove the existing animations running on
the ball. Add (still inside the if):

ball.pop_removeAllAnimations()

 raywenderlich.com

Next create a velocity equal to the current ball velocity but reversed horizontally:

let newVelocity = CGPoint(x: -velocity.x, y: velocity.y)

This will already make the ball reverse direction, but that’s not quite enough – at
the moment your replace the animation the ball is outside the allowed bounds. Just
re-position it back inside the bounds – this won’t make the ball jump since the
change will be just few pixels:

let newX = min(max(minX, ball.center.x), maxX)

The combination of calling mix(a:, b:) and min(a:, b:) clamps the ball x
coordinate between minX and maxX.

Finally re-create the decay animation but use the new velocity:

let newAnimation = POPDecayAnimation(propertyNamed:
kPOPViewCenter)
newAnimation.fromValue = NSValue(CGPoint: CGPoint(x: newX, y:
ball.center.y))
newAnimation.velocity = NSValue(CGPoint: newVelocity)
newAnimation.delegate = self

The new animation is ready to go, add:

ball.pop_addAnimation(newAnimation, forKey: "shot")

Believe it or not that’s all you needed to do to create a cool bounce animation off
the screen edges. If you want to extend the game just a bit more you can make the
ball bounce off all of the screen edges.

