

 raywenderlich.com

Collection Views
Hands-On Challenges

Copyright © 2015 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

 raywenderlich.com

Challenge D: Flying Cells
With the functionality to insert cells now complete, it’s time to turn your attention
to the stock insert animation. Currently cells simply appear, with the others around
them moving to make way. This is nice, but you can do even better!

Your challenge this time is to create a subclass of UICollectionViewFlowLayout that
animates the cells in from just underneath the Add button in navigation bar. They
should start off the same size as the button, and grow to their final size as part of
the animation.

Since this is quite challenging, here are some hints to help you on you way:

1. You’ll need a way to inform the layout subclass of the index path of the item
being inserted; you already have this information in MasterViewController.

2. In your layout subclass you’ll need to override the method that deals with the
initial layout attributes for appearing items.

3. Once you have the layout attributes of the item that’s being inserted, you’ll want
to manipulate the alpha, center, transform, and zIndex properties to get the
animation just right.

Before you turn the page for our solution, be sure to give it a try for yourself first!

 raywenderlich.com

Solution
Right-click on the Layouts group in the Project Navigator and select New File….
In the dialog box choose iOS\Source\Swift File and click Next. Name the file
PapersFlowLayout.swift and click Create.

Open PapersFlowLayout.swift and replace the existing import statement with the
following:

import UIKit

Below that, add the following class definition:

class PapersFlowLayout: UICollectionViewFlowLayout {

}

Next, you need to add property to hold the index path of the item that’s being
inserted. Add the following to the top of the class definition:

var appearingIndexPath: NSIndexPath?

This will be used to make sure you’re adjusting the layout attributes of the correct
item.

Now you need to override the method that provides the layout with the initial layout
attributes for items being inserted into the collection view. Add the following to the
class:

override func
initialLayoutAttributesForAppearingItemAtIndexPath(itemIndexPath:
NSIndexPath) -> UICollectionViewLayoutAttributes? {

}

Next, you need a set of layout attributes for the item at the given index path; you
can ask the super implementation to provide them to you. Add the following to the
top of the method:

let attributes =
 super.initialLayoutAttributesForAppearingItemAtIndexPath(
 itemIndexPath)

This will return the set of layout attributes that would have been passed to the
collection view by the default UICollectionViewFlowLayout class. You’re going to
manipulate them if the index path matches the index path of the item being
inserted.

 raywenderlich.com

Add the following just below the call to super:

// 1
if let indexPath = appearingIndexPath {
 // 2
 if let attributes = attributes {
 // 3
 if indexPath == itemIndexPath {
 // 4
 attributes.alpha = 1.0
 attributes.center = CGPoint(x:
 CGRectGetWidth(collectionView!.frame) - 23.5, y: -24.5)
 attributes.transform = CGAffineTransformMakeScale(0.15,
 0.15)
 // 5
 attributes.zIndex = 99
 }
 }
}
return attributes

Here’s what’s happening:

1. Since the appearingIndexPath property is an optional, you need to unwrap it

2. The call to super to get the initial layout attributes also returns an optional, so
that too needs to be unwrapped

3. Check to see if the current index path is the same as the one being inserted

4. If it is, update the layout attributes so the cell is positioned and scaled
accordingly

5. It’s important the zIndex is set to something high so the cell will appear above all
the other cells, which is key to this animation

Finally you return the layout attributes so they can be used by the collection view to
place the cells accordingly. Remember, this animation will only be applied to items
being inserted.

Now you need to tell the collection view to use your custom layout. Open
Main.storyboard, and in the Document Outline for the Master View Controller
Scene select Collection View Flow Layout:

 raywenderlich.com

Then in the Identity Inspector, set the Class in the Custom Class section to
PapersFlowLayout:

You should notice the name of the object in the Document Outline change to
Papers Flow Layout.

With the subclass created and the collection view updated to use it, the final step is
to update MasterViewController.

Open MasterViewController.swift and find addButtonTapped(_:). Add the
following directly below the line where you create the indexPath constant:

let layout = collectionViewLayout as PapersFlowLayout
layout.appearingIndexPath = indexPath

Here you get a reference to the collection view layout, casting it to the flow layout
subclass you just created. You then set the appearingIndexPath property to the
index path of the item being inserted.

Finally, you need to reset the appearingIndexPath property once the animation is
complete. Replace this line:

}, completion: nil)

 raywenderlich.com

With the following:

}, completion: { (finished: Bool) -> Void in
 layout.appearingIndexPath = nil
})

Here you’re simply using the animation’s completion block to reset the property.

Build and run. Tap the Add button and you’ll see new papers fly down from
underneath the Add button, growing in size until they find their final resting place.

