

 raywenderlich.com

CALayers
Hands-On Challenges

Copyright © 2015 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written per- mission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

 raywenderlich.com

Challenge B: Configurable
Gradient
Currently, the gradient is hard-coded to black and white. Wouldn’t it be great if you
could dynamically change those colors right from the Storyboard editor?

Thanks to a new feature in iOS 8 you can; and it’s pretty easy. Let’s see how it
works.

Open AvatarView.swift. You’ll notice that the class is marked with an
@IBDesignable keyword:

@IBDesignable
class AvatarView: UIView {

This is why you are able to preview the control in the Storyboard editor. When
@IBDesignable is set on a view, the Storyboard editor will attempt to render the
view. It will call prepareForInterfaceBuilder() on startup, and it will call
layoutSubviews() when the bounds change.

 raywenderlich.com

When you have an @IBDesignable view, you can easily set some properties as
editable in the storyboard editor; just put the @IBInspectable tag beforehand. A few
caveats:

• Only certain types are editable: Int, CGFloat, Double, String, Bool, CGRect, CGSize,
CGPoint, UIImage, and UIColor.

• You must manually set the datatype for the property – you can’t rely on implicit
datatypes. In other words, this will not work (implicit typing):

@IBInspectable var strokeColor = UIColor.blackColor()

But this will work (explicit typing):

@IBInspectable var strokeColor: UIColor = UIColor.blackColor()

• Often you will want to set an observer when your property changes so you can
reconfigure your layer properties appropriately.

Let’s put this all together. Replace the definitions of strokeColor, startColor, and
endColor with the following:

@IBInspectable var strokeColor: UIColor = UIColor.blackColor() {
 didSet {
 configure()
 }
}

@IBInspectable var startColor: UIColor = UIColor.whiteColor() {
 didSet {
 configure()
 }
}

@IBInspectable var endColor: UIColor = UIColor.blackColor() {
 didSet {
 configure()
 }
}

This makes each property a var (rather than let) and calls configure() whenever
one changes so the layer properties can be updated appropriately.

Then open Main.storyboard, click your avatar view, and in the Attributes
Inspector you’ll see new options to select the colors:

 raywenderlich.com

Use the controls to set the following colors:

• Stroke Color: #FFFFFF

• Start Color: #0288D1

• End Color: #03A9F4

You should then see the following:

Congrats! This makes it super handy to iterate on color choices.

