
OVERVIEW

Session 13:

Getting Started

with ARKit

AR

1901: L. FRANK BAUM

“It consists of this pair of spectacles.  
While you wear them every one you meet
will be marked upon the forehead with a
letter indicating his or her character…”

• Good: G
• Evil: E
• Wise: W
• Foolish: F
• Kind: K
• Cruel: C

1968: IVAN SOUTHERLAND

1990: TOM CAUDELL

1980S, 1990S AND ON: STEVE MANN

1998: SPORTS BROADCASTING

ARKIT IN A NUTSHELL

Real-world images
These come from a camera, and
can simply be a backdrop for
your app (think Pokémon Go), or
can provide input for it (think
IKEA Place).

Virtual images
These are 2D or 3D images drawn on
top of the real-world images from the

camera.

Sensor smarts
This is the AR application’s ability

to detect its position and
orientation, as well as 
objects and conditions 

in the real world.

+ +

=

ARKIT USER REQUIREMENTS

iDevice with A9 processor or later
• iPhone: 6S / 6S Plus / 7S / 7S Plus / 8 / 8 Plus / X
• iPad Pro: 9.7” / 10.5” / 12.9”
• iPad: 2017 model

iOS 11
The first iOS version 
that supports ARKit

Permission to use
the camera

Adequate light

ARKIT DEVELOPER REQUIREMENTS

The user requirements Xcode 9.3 or later SpriteKit / SceneKit basics

Willingness to do 
at least a little 3D
math…

Readiness to walk about
and wave your iDevice

…and deal with
changes and upgrades.

WHAT REAL-WORLD THINGS CAN ARKIT IDENTIFY?

Horizontal planes

Vertical planes

2D images Faces

SPRITEKIT AR VS. SCENEKIT AR

SpriteKit AR:
Overlaying camera images with 
2D graphics using SpriteKit

SceneKit AR:
Overlaying camera images with 
3D graphics using SceneKit

Camera image drawn to 
the same AR SceneKit
view

3D graphics drawn to 
an AR SceneKit view (ARSCNView)

2D graphics drawn to 
an AR SpriteKit view (ARSKView)

Camera image drawn to 
the same AR SpriteKit
view

Demo 1: Happy AR Painter 
In which you begin your ARKit journey by paying homage to the
great Bob Ross by building an app that paints in real-world 3D.
Demo 2: Raykea  
Let’s make our own version of the most popular ARKit app. Why
should makers of semi-disposable furniture have all the fun?

THE DEMOS

HAPPY AR PAINTER

Session 13:

Getting Started

with ARKit

Action

QUICK SCENEKIT OVERVIEW

The root’s  
child nodes

The  
root 
node

Scene graph a

SCENEKIT’S 3D COORDINATE SYSTEM

Origin:
The device’s position in space 
when the AR session begins.

Position:
A position in space
relative to the origin.

Orientation:
The angles at which something 
is tilted, relative to x-, y-, and z-axes.

X-axis  
(increases to the right)Z-axis  

(increases towards the user)

Y-axis  
(increases upward)

Y
Heave:  
Movement parallel 
to the Y-axis
(up and down)

-Y

Sway:  
Movement parallel 

to the X-axis
(right and left)

X-X

Y Roll:  
Rotation around 
the Y-axis

Pitch:  
Rotation around 
the X-axis

X

CONFIGURATION: 3 OR 6 DEGREES OF FREEDOM?

Z

Yaw:  
Rotation around 
the Z-axis

Z

Surge:  
Movement parallel 
to the Z-axis
(back and forth)

-Z

AROrientationTrackingConfiguration
ARWorldTrackingConfiguration ARWorldTrackingConfiguration

ALIGNMENT: RELATING TO THE REAL WORLD

gravity

-Z:  
Relative
Forward

+Z:
Relative

Back

-X:  
Relative 

Left

+X:  
Relative 
Right

+Y: Up
Opposite gravity

-Y: Down
With gravity

Origin is device’s 
location at start 
of AR session

gravityAndHeading

+Y: Up

-Z: North

+Z: South

-X: West +X: East

Opposite gravity

-Y: Down
With gravity

Origin is device’s 
location at start 
of AR session

Camera

-Z:  
Relative
Forward

+Z:
Relative

Back

-X:  
Relative 

Left

+X:  
Relative 
Right

+Y:  
Relative 

Up

-Y:
Relative 

Down

Origin is device’s 
location at start 
of AR session

Orientation:  
Which way the 
camera’s facing

Location:
Where the  
camera is

[]rightx upx -fwdx locx

righty upy -fwdy locy

rightz upz -fwdz locz

0 0 0 1

THE SCENEVIEW’S TRANSFORMATION MATRIX

A 4-by-4 matrix representing the scene’s location and orientation:

right

-fwd

up

loc
fwd

DIFFUSE VS. SPECULAR REFLECTION

It might be easier to show you what these are than to tell you about them.

Diffuse reflection

Specular reflection

DEMO 1:

HAPPY AR PAINTER

HOW HAPPY AR PAINTER WORKS, PART 1

1. Define a SceneKit geometry:

HOW HAPPY AR PAINTER WORKS, PART 2

3. Assign the geometry 
to a node.

2. Apply reflective properties  
to the geometry.

HOW HAPPY AR PAINTER WORKS, PART 3

5. Set the node’s orientation and position 
to that of the device’s orientation 

and position.

4. Get the device’s orientation and position
from the SceneView’s  

transform matrix.

HOW HAPPY AR PAINTER WORKS, PART 4

6. Add the node to the scene.

The  
root 
node

RAYKEA!

Session 13:

Getting Started

with ARKit

PLANE DETECTION

ACTIVATING PLANE DETECTION

config.worldAlignment = .gravity
// or
config.worldAlignment = .gravityAndHeading

config.planeDetection = .horizontal
// or
config.planeDetection = .vertical
// or
config.planeDetection = [.horizontal,
 .vertical]

These two ARWorldTrackingConfiguration settings  
will enable horizontal plane detection:

AR ANCHORS

-Z

+Z

-X +X

+Y

-Y

An ARAnchor is a reference point
in 3D space, marking position and orientation  
in an AR scene.

They can be added to a scene in 2 ways: 

1. Programmatically, by your code.  
Do this to keep track of specific objects or
locations.  

2. Automatically, by ARKit.  
With plane detection turned on, ARKit adds 
ARPlaneAnchors (a subclass of ARAnchor) to
the scene.

HOW ARKIT DETECTS HORIZONTAL PLANES

The equation for a plane is defined by 2 things…

1. A point on the plane.   2. A vector normal (perpendicular) 
to the plane.  
For horizontal planes, this vector
is gravity, which the accelerometer
can detect.

(Don’t believe this? Try plane detection with the AR configuration’s
worldAlignment property to camera,  
the one setting that doesn’t align the Y-axis with gravity.)

DETECTING VERTICAL PLANES IS TRICKIER

2. The hard part is finding the plane’s normal. 
With vertical planes, we don’t have a handy force
like gravity to rely on to find the normal.

1. ARKit can find points on a vertical plane. 
It can find feature points on vertical surfaces easily.

(Special bragging rights to the first 
person who can answer this question: 
“Why can’t we simply use a vector 
that’s perpendicular to gravity 
as the normal for vertical surfaces?”)

RaycastingPoints and 
a known horizontal plane

SO HOW DOES ARKIT DETECT VERTICAL PLANES?

High-contrast borders

HIT TESTING

!

Hit testing answers the question “Does this 2D screen coordinate correspond 
to the 3D coordinates on an AR anchor, real-world feature, or virtual object?

 🌟 🌟 🌟

[], ,

WHAT CAUSES TRACKING TO FAIL?

Too much motionToo few features

RelocatingToo little light

HOW WELL IS THE CAMERA TRACKING?

.notAvailable .normal .limited

session(_:cameraDidChangeTrackingState:)

This ARKit delegate method gets called 
whenever the camera’s tracking state changes…

ARCamera.trackingState

…and it gives us this 
very handy property…

…which will contain one of three possible values:

REASONS WHY TRACKING IS LIMITED

If tracking is limited, you can check the reason property to see why.

.initializing .excessiveMotion .insufficientFeatures .relocalizing

DEMO 2:

RAYKEA

HOW RAYKEA WORKS, PART 1

2. Cover any detected vertical planes 
with a poster.

1. Continuously seek horizontal 
and vertical planes.

HOW RAYKEA WORKS, PART 2

4. When the user taps the screen, 
perform a hit test to see if that tap

corresponds to a detected 
horizontal plane.

3. Cover any detected horizontal planes 
with a “place furniture here” grid.

Place furniture here

Place furniture here

Place furniture here

!

HOW RAYKEA WORKS, PART 3

5. If the tap corresponds to a detected horizontal plane, 
find the real-world coordinates that correspond to that tap, 

and draw furniture at those coordinates.

CONCLUSION

Session 13:

Getting Started

with ARKit

Demo 1: Happy AR Painter 
Your first AR scene, where you added simple SceneKit
geometric shapes to the scene and used the device’s position
and orientation.
Demo 2: Raykea  
You took Demo 1’s lessons, added 3D models, hit tests, and
plane detection, and started interacting with the real world.

WHAT YOU LEARNED

SpriteKit and 
ARKit

WHAT YOU DIDN’T LEARN

Even at less than a year old, ARKit already offers 
so much ground to cover that a single workshop 
can’t cover it all…

Embedding video in AR scenes 
and 2D image recognition

SceneKit physics

ARKit and Core Location

WHERE TO GO FROM HERE?

Apple’s ARKit documentation
Apple developer (developer.apple.com.arkit)
Apple’s human interface guidelines 
(developer.apple.com/ios/human-interface-guidelines)

“Awesome ARKit” repo on GitHub
github.com/olucurious/Awesome-ARKit

RAYWENDERLICH.COM AND ARKIT

ARKit by Tutorials
Coming soon!

Videos
Coming soon!

Articles
Coming soon!

http://RayWenderlich.com

THESE ARE THE EARLY DAYS OF MOBILE AR

YOU HAVE A RESPONSIBILITY

Pronounces the word
as “nu-cue-ler”

You don’t want to know
what this guy’s into

Totally sketch neighborhood
Competitor!

I’m going to cover
them up.

Who made this pile
of dirt? Aliens. Tap here to get demographic info

on this guy based on his shoes

HOW TO FIND ME ONLINE

Global Nerdy, my tech blog
globalnerdy.com

Twitter
@AccordionGuy

LinkedIn
linkedin.com/in/joeydevilla

